Mar 10, 2013

[TUTORIAL] contoh kasus analisis faktor dengan SPSS

contoh kasus untuk analisis faktor

Berdasarkan SDKI 2002-2003 cakupan imunisasi lengkap anak usia 12-23 bulan di Indonesia berdasarkan informasi dari KMS (Kartu Menuju Sehat) atau laporan ibu sebesar 52 persen. Angka ini masih keci bilBerdasarkan SDKI 2002-2003 cakupan imunisasi lengkap anak usia 12-23 bulan di Indonesia berdasarkan informasi dari KMS (Kartu Menuju Sehat) atau laporan ibu sebesar 52 persen. Angka ini masih keci bila dibandingkan dengan 80 persen angka cakupan imunisasi lengkap yang ditargetkan oleh UCI ( Universal Chilhood Imunization). Bila dilihat pada cakupan imunisasi lengkap pada tingkat propinsi hanya ada dua propinsi yang telah memenuhi target UCI yaitu Yogyakarta (84 persen) dan Bali (80 persen). Oleh karena itu, ingin diketahui faktor dominan apakah yang mempengaruhi ketidaklengkapan imunisasi anak usia 12-23 bulan di Indonesia. Faktor dominan yang ingin diketahui pengaruhnya dibatasi pada karakteristik ibu dan ayah.


Sehingga inti dalam kasus ini yaitu ingin melihat Faktor – Faktor yang Mempengaruhi ketidaklengkapan Imunisasi Anak Usia 12 – 23 Bulan di Indonesia Tahun 2003. Data yang digunakan dalam kasus di atas berasal dari Survei Demografi dan Kesehetan Indonesia, 2002-2003. Silahkan lihat kalau coba-coba disini. data imunisasi

Langkah-langkah dalam Analisis faktor dengan SPSS

Menyamakan satuan data


  1. Buka data yang sudah dimasukkan. Tampilannya seperti berikut.
    data lengkap
  2. Karena data memiliki variasi yang besar (karena satuan dan rentang data yang berbeda-beda), maka distandardisasi terlebih dahulu dengan mentransformasikan ke dalam bentuk Z-score, yaitu dengan klik Descriptive StatisticsDescriptives. Maka akan muncul tampilan berikut.
    standardized value
  3. Pada kolom Variable(s) masukkan semua variabel, lalu centang pilihan ‘Save standardized values as variables’. Kemudian Pilih Menu Options maka akan muncul tampilan berikut.
    standardized option
  4. Beri tanda cek pada Mean, dengan pada Dispersion dicek Standard Deviation dan Variance, serta beri tanda cek pada Variable List pada Display Order. kemudian Klik Continue. Maka akan muncul variabel baru seperti berikut.
    hasil standardized

Melakukan Analisis Faktor


  1. Pilih Analyze >> Data Reduction >> Factor. Maka akan muncul jendela Factor Analysis
  2. Pilih semua variabel sebagai variabel analisis. Klik Descriptive, pada bagian Correlation Matrix beri tanda cek pada Coefficient,significan levels,  invers, Anti image dan KMO and Bartlett’s test of sphericity. Klik Continue.
    factor descriptive
  3. Kemudian klik pada Extraction dan pastikan pilihan Analyze pada correlation matrix dan pada bagian Display beri tanda cek pada kedua pilihan. Sebagai kriteria ekstaksi (Extraction) kita akan menggunakan eigenvalue, yaitu Eigenvalues over: 1. Klik Continue.
    factor extracrion
  4. Klik Rotation lalu pilih Varimax dan pada Display pilih Rotated Solution. Klik Continue
    factor varimax
  5. Klik Scores, lalu beri tanda cek Save as Variables dengan Method: Regression dan Display factor score coefficient matrix, agar kita bisa melihat nilai variabel/faktor baru yang terbentuk. Klik Continue.
    factor scores
  6. Setelah itu klik OK, akan muncul kumpulan output yang siap diinterpretasi.


Intrepretasi

Deskripsi

Deskripsi Data

Correlation Matrix

Tabel Correlation Matrix merupakan tabel matriks korelasi yang berisi nilai-nilai korelasi antara variabel-variabel yang akan dianalisis. Pada bagian Correlation dapat dilihat besarnya korelasi antarvariabel. Sebagai contoh, korelasi antara variabel ibu tinggal di desa dengan ibu yang bekerja sebesar -0,573 yang menunjukkan terdapat hubungan yang cukup kuat dan negative. Artinya, semakin banyak persentase ibu yang tinggal di desa, maka makin sedikit persentase ibu yang bekerja.
correlation matrix

Kemudian pada baris sig.(1-tailed) menunjukkan signifikansi korelasi antara variabel-variabel tersebut. Korelasi antara variabel ibu tinggal di desa dengan ibu yang bekerja signifikan, terlihat dari nilai p-value sebesar 0,001(<0.05) yang berarti terdapat memang terdapat hubungan antara variabel ibu tinggal di desa dengan variabel ibu yang bekerja.

Inverse of Correlation Matrix

Sedangkan table Inverse of Correlation Matrix menyatakan nilai-nilai pada matriks korelasi setelah matriks tersebut diinverskan.
inverse correlation
Catatan : Dalam kasus ini, digunakan matriks korelasi untuk keperluan analisis faktor sebab data yang digunakan memiliki satuan yang berbeda-beda,sehingga distandarisasi menggunakan matriks korelasi untuk menghilangkan bias.

Analisis Inferensia

KMO dan Bartlett’s Test

kmo bartlett test
Berdasarkan Bartlett’s Tes of Sphericity dengan Chi-Square 94,304 (df 45) dan nilai sig = 0,000 < 0,05 menunjukkan bahwa matriks korelasi bukan merupakan matriks identitas sehingga dapat dilakukan analisis komponen utama. Di samping itu, Nilai KMO yang dihasilkan adalah sebesar 0.574 serta p-value sebesar 0,000 (<0,05) , nilai tersebut jatuh dalam kategori “lebih dari cukup” layak untuk kepentingan analisis faktor. Oleh karena itu, variabel – variabel dapat dianalisis lebih lanjut (AA Afifi,1990:Dillon dan Goldstein,1984).

Tabel Anti-Image Matrices

anti image matrics
Selain pengecekan terhadap KMO and Bartlett test, dilakukan juga pengecekan Anti Image matrices untuk mengetahui apakah variabel – variabel secara parsial layak untuk dianalisis dan tidak dikeluarkan dalam pengujian. Berdasarkan tabel di atas, terlihat bahwa dari sepuluh variabel yang akan dianalisis, terdapat dua variabel yang memiliki nilai MSA (dapat dilihat pada output yang bertanda a pada kolom Anti-Image Correlation) < 0,5 yaitu variabel ibu tidak bekerja dan variabel bapak yang tidak bekerja. Karena ada variabel yang nilai MSA nya < 0,5 , maka variabel tersebut tidak dapat dianalisis lebih lanjut. Meskipun ada dua variabel yang nilai MSA nya < 0,5, namun kita tidak harus membuang dua variabel sekaligu. Pilih salah satu variabel yang memiliki MSA terkecil, yaitu bapak tidak bekerja sebesar 0,360 sehingga variabel tersebut dikeluarkan dan dilakukan pengujian ulang terhadap kesembilan variabel lainnya seperti pada cara di atas.
kmo bartlett

Setelah variabel bapak tidak bekerja dikeluarkan, maka nilai KMO meningkat menjadi 0,652 dan tingkat signifikansi 0,000.Pengurangan variabel yang “tidak layak” meningkatkan nilai KMO sehingga cukup beralasan untuk melakukan pengurangan tersebut Hal ini dapat menunjukkan bahwa kesembilan variabel tersebut’ lebih dari cukup’ layak untuk dilakukan analisis faktor.

Communalities

Dari keseluruhan nilai dalam table communalities, diperoleh bahwa kesembilan variabel awal mempunyai nilai communalities yang besar ( > 0.5). Hal ini dapat diartikan bahwa keseluruhan variabel yang digunakan memiliki hubungan yang kuat dengan faktor yang terbentuk. Dengan kata lain, semakin besar nilai dari communalities maka semakin baik analisis faktor, karena semakin besar karakteristik variabel asal yang dapat diwakili oleh faktor yang terbentuk.
communalities

  1. Keeratan hubungan variabel ibu bekerja terhadap faktor yang terbentuk sebesar 0,811 artinya hubungan variabel ibu bekerja terhadap faktor yang terbentuk erat. Atau dapat juga dikatakan kontribusi variabel ibu bekerja terhadap faktor yang terbentuk sebesar 81,1 %.
  2. Kemudian, keeratan hubungan variabel bapak yang pendidikannya SD ke bawah sebesar 0,849 artinya hubungan variabel bapak yang pendidikannya SD ke bawah terhadap faktor yang terbentuk erat. Atau dapat juga dikatakan kontribusi variabel variabel bapak yang pendidikannya SD ke bawah terhadap faktor yang terbentuk sebesar 84,9 %.

Total Variance Explained

Table Total Variance Explained menunjukkan besarnya persentase keragaman total yang mampu diterangkan oleh keragaman faktor - faktor yang terbentuk. Dalam tabel tersebut juga terdapat nilai eigenvalue dari tiap-tiap faktor yang terbentuk. Faktor 1 memiliki eigenvalue sebesar 2,991, Faktor 2 sebesar 2,120, dan Faktor 3 sebesar 1,323. Untuk menentukan berapa komponen/faktor yang dipakai agar dapat menjelaskan keragaman total maka dilihat dari besar nilai eigenvaluenya, komponen dengan eigenvalue >1 adalah komponen yang dipakai. Kolom ‘cumulative %’ menunjukkan persentase kumulatif varians yang dapat dijelaskan oleh faktor. Besarnya keragaman yang mampu diterangkan oleh Faktor 1 sebesar 33,233 persen, sedangkan keragaman yang mampu dijelaskan oleh Faktor 1 dan 2 sebesar 56,787 persen. Ketiga faktor mampu menjelaskan keragaman total sebesar 71,485 persen. Berdasarkan alasan nilai eigen value ketiga faktor yang lebih dari 1 dan besarnya persentase kumulatif ketiga faktor sebesar 71,485 persen, dapat disimpulkan bahwa ketiga faktor sudah cukup mewakili keragaman variabel – variabel asal.
total variance explained
Proporsi keragaman data yang dijelaskan tiap komponen setelah dilakukan rotasi terlihat lebih merata daripada sebelum dilakukan rotasi. Faktor pertama menerangkan keragaman data dengan proporsi terbesar, yaitu 33,233 persen menurut metode ekstraksi dengan analisis faktor (sebelum rotasi) dan dengan analisis faktor (setelah rotasi) keragaman data awal dapat dijelaskan sebesar 26,841 persen. Kemudian untuk faktor kedua menerangkan keragaman data awal dengan proporsi 23,554 persen menurut metode ekstraksi dengan analisis faktor (sebelum rotasi) dan dengan analisis faktor (setelah rotasi) keragaman data awal dapat dijelaskan sebesar 26,315 persen. Sedangkan untuk faktor ketiga menerangkan keragaman sebesar 14,698 persen sebelum dilakukan rotasi dan naik menjadi 18,328 persen setelah dirotasi.
Proporsi keragaman data yang lebih merata setelah dilakukan rotasi menunjukkan keseragaman data awal yang dijelaskan oleh masing-masing faktor menjadi maksimum.

Scree Plot

scree plot
Scree Plot adalah salah satu alternatif yang dapat digunakan untuk membantu peneliti menentukan berapa banyak faktor terbentuk yang dapat mewakili keragaman peubah – peubah asal. Bila kurva masih curam, akan nada petunjuk untuh menambahkan komponen. Bila kurva sudah landai, akan ada petunjuk untuk menghentikan penambahan komponen, walaupun penilaian curam/landai bersifat subjektif peneliti. Dari scree plot di atas, terlihat pada saat satu komponen terbentuk, kurva masih menunjukkan kecuraman, begitu juga pada saat di titik ke-2, garis kurva masih tajam, di titik ke-3 garis kurva masih tajam namun sedikit berbeda dari pola kedua garis sebelumnya. Setelah melewati titik ke-3, garis kurva sudah mulai landai, semakin ke kanan akan semakin landai. Dari penjelasan di atas, dapat kita tarik kesimpulan bahwa terdapat tiga komponen atau faktor yang terbentuk.

Table component matrix 

component matrix
Table component matrix menunjukkan besarnya korelasi tiap variabel dalam faktor yang terbentuk. Nilai – nilai koefisien korelasi antara variabel dengan faktor - faktor yang terbentuk (loading factor) dapat dilihat pada table Component Matrix. Ketiga faktor tersebut menghasilkan matrik loading faktor yang nilai-nilainya merupakan koefisien korelasi antara variabel dengan faktor-faktor tersebut. Bila dilihat variabel –variabel yang berkorelasi terhadap setiap faktornya, ternyata loading faktor yang dihasilkan belum mampu memberikan arti sebagaimana yang diharapkan. Hal ini terlihat dari variabel ibu yang tidak punya KMS dimana korelasi variabel ini dengan faktor 1 sebesar 0,609, sedangkan dengan faktor 2 sebesar -0,508 (tanda negative hanya menunjukkan arah korelasi), sehingga kita sulit untuk memutuskan apakah variabel ibu tidak punya KMS dimasukkan ke faktor 1 atau faktor 2. Tiap faktor belum dapat diinterpretasikan dengan jelas sehingga perlu dilakukan rotasi dengan metode varimax. Rotasi varimax adalah rotasi orthogonal yang membuat jumlah varian faktor loading dalam masing-masing faktor akan menjadi maksimum, dimana nantinya peubah asal hanya akan mempunyai korelasi yang tinggi dan kuat dengan faktor tertentu saja (korelasinya mendekati 1) dan tentunya memiliki korelasi yang lemah dengan faktor yang lainnya (korelasinya mendekati 0). Hal yang demikian belum tercapai pada table component matrix diatas.

Rotated Component Matrix

rotated component matrix
Setelah dilakukan rotasi faktor dengan metode varimax, diperoleh table seperti yang tertera di atas yaitu Rotated Component Matrix. Terdapat perbedaan nilai korelasi variabel dengan setiap faktor sebelum dan sesudah dilakukan rotasi varimax. Terlihat bahwa loading faktor yang dirotasi telah memberikan arti sebagaimana yang diharapkan dan setiap faktor sudah dapat diinterpretasikan dengan jelas. Terlihat pula bahwa setiap variabel hanya berkorelasi kuat dengan salah satu faktor saja (tidak ada variabel yang korelasinya < 0,5 di ketiga faktor). Dengan demikian, lebih tepat digunakan loading faktor yang telah dirotasi sebab setiap faktor sudah dapat menjelaskan keragaman variabel awal dengan tepat dan hasilnya adalah sebagai berikut

  1. Faktor 1 , beberapa variabel yang memiliki korelasi yang kuat dengan faktor 1 , yaitu variabel ibu yang tinggal di desa, ibu yang mengakses koran, ibu yang bekerja dan urutan anak.
  2. Faktor 2, terdapat beberapa variabel yang memiliki korelasi yang kuat dengan faktor 2 , yaitu variabel ibu yang mengakses radio, ibu yang mengakses TV, ibu yang tidak punya KMS, dan bapak yang pendidikannya SD ke bawah.
  3. Faktor 3, dalam faktor ini tiga variabel yang memiliki korelasi yang kuat dengan faktor 3, yaitu variabel ibu yang pendidikannya SD ke bawah.

Component Transformation Matrix

component transformation matrix
Tabel Component Transformation Matrix berfungsi untuk menunjukkan apakah faktor – faktor yang terbentuk sudah tidak memiliki korelasi lagi satu sama lain atau orthogonal. Bila dilihat dari table Component Transformation Matrix, nilai – nilai korelasi yang terdapat pada diagonal utama berada di atas 0,5 yaitu -0,606;0,614;0,891. Hal ini menunjukkan bahwa ketiga faktor yang terbentuk sudah tepat karena memiliki korelasi yang tinggi pada diagonal – diagonal utamanya.
Untuk lengkapnya bisa didownload disini beserta intrepretasi ouputnya Tutorial contoh analisis faktor beserta hasil intrepretasi dengan SPSS

Untuk sedikit materi analisis faktor bisa dilihat disini gan. teori analisis faktor


Written by: Nasrul Setiawan
STATISTIK CERIA, Updated at: 3:41 AM

26 comments :

  1. uji normalitas data panel eviews sama uji asumsi klasik lainnya pake eviews data panel, gimana caranya mas?

    ReplyDelete
    Replies
    1. maaf ya blom dbuat.
      nnti insya allah dbuat tutorialnya juga.

      Delete
  2. Assalamu'alaikum...salam kenal pak...maaf comment dsini. Saya sedang butuh software SPSS, sya sudah download di link yang ada di blog ini tapi kok tidak bisa ya...bisa kah saya minta tolong di burningkan kemudian di kirim k alamat saya??? saya tunggu jawabannya nggih...tolong hubungi saya di allamahlala@gmail.com

    ReplyDelete
  3. selamat siang pak, selamat tahun baru. mau tanya pak, apakah pada data kuantitatif, langkah-langkah analisis faktornya sama dengan data kualitatif? kalau berbeda, bisa tlg beritahu dimana perbedaannya pak? trims

    ReplyDelete
    Replies
    1. Selamat malam dan selamat tahun baru pak.
      analisis faktor (yaitu , yang didasarkan pada matriks korelasi Pearson ) mengasumsikan bahwa variabel kuantitatif dan mengikuti distribusi normal multivariat. Jika model termasuk variabel yang kualitatif analisis faktor dapat dilakukan dengan menggunakan matriks korelasi polikorik. untuk saat ini saya belum ngebahas itu.

      Delete
  4. mas..makasi banyak ilmunya :)
    saya kebetulan sedang mau nulis skripsi yang menggunakan analisis faktor ini..
    izinkan saya bertanya sedikit yah.. :)

    1. saya pernah dengar melalui analisis faktor dapat menyusun indeks..
    seperti misalnya DKP (dewan ketahanan pangan) menyusun Indeks Ketahanan Pangan..
    yang ingin saya tanyakan.. itu bagaimana caranya ya?

    2. Jika skripsi saya ingin mengkaji mengenai "faktor-faktor yang mempengaruhi ketahana pangan di Indonesia", maka apakah dalam analisis faktor ini dibutuhkan semacam variabel dependen seperti provinsi dengan status rawan pangan?

    terimakasih..mohon bantuannya :)

    ReplyDelete
    Replies
    1. 1. iya, analisis faktor setahu sy mmg bisa dipakai buat bikin alat ukur (indeks). Setelah semua variabel dkelompokkan jd bbrapa faktor, faktor-faktor itu bisa dbkin skor faktornya. Indeksnya bisa dbuat dari skor faktor2 tsb, bisa dikalikan, dijumlah pakai penimbang dsb, asal ada dasar (referensi) yang kuat.
      2. kalo judulnya itu, pakai regresi jg bisa, asal ada variabel x dan y aja. Analisis faktor itu cm mengelompokkan variabel, dari yang banyak menjadi cuma beberapa faktor

      Delete
  5. pak,, mohon dibantu..
    sy sedang dalam penyelesaian skripsi. Judul penelitian sy itu mengenai tingkat kepuasan mahasiswa pak. tingkat kepuasannya itu dilihat dari tingkat harapan dan kinerja. Kalo sy analisis data menggunakan analisis faktor, yang sy uji itu tingkat harapan, kinerja atau kedua-duanya pak??
    terima kasih pak..
    mohon jawabannya..

    ReplyDelete
    Replies
    1. menurut sy sebaiknya keduaduanya. karena untuk melihat kepuasan harus melihat dari kedua variabel tersebut. karena melihat harapan dan kinerja.

      Delete
  6. selamat sore pak. saya sedang menyelesaikan proposal tentang kualitas audit. untuk kualitias audit terdapat 8 independen variabel. dosen saya minta dilakukan uji faktor untuk mereduksi independen variabel. punya referensi buku tentang analisis faktor pak?.

    terima kasih

    ReplyDelete
  7. Makasih banyak ilmunya Pak. Ijin sedot materinya ya Pak :)

    ReplyDelete
  8. Slmt malam. Sangat menarik penjelasanya. Mas nasrul, kebetulan saat ini saya sedang mengerjakan tesis tentang analisa data sekunder. Jika berkenan saya ingin berkonsultasi dengn mas nasrul, bila berkenan saya mohon kontak yg dapat dihubungi. Email sy pungkiyanuardi@gmail.com. terimakasih atas bagi2 ilmunya mas.

    ReplyDelete
  9. terima kasih ilmunya, mas... sangat bermanfaat.

    ReplyDelete
  10. pak, jadi faktor yang paling dominan yang mempengaruhi pada contoh yang bapak berikan apa ya pak ?

    ReplyDelete
  11. Terimakasih ilmunya pak, sangat bermanfaat sekali
    Saya mau bertanya...sblum analisis faktor konfirmatori kita uji asumsi dulu kan ya, diantaranya
    1. Outlier
    2. Normalitas
    3. Multikolonieritas
    Nah pertanyaan saya uji normalitas pada multivariat ini bagaimana caranya pak?
    Mohon bantuanya, dosen saya bilang pakai uji jarak mahalanovis, tapi saya tidak mengerti,mohon di beri petunjuk pak.
    Terimakasih...

    ReplyDelete
  12. terimakasih sekali pak,sangat membantu dalam pengerjaan skripsi saya ini..
    oiya tapi masalah yang saya temui mengenai tidak dapat dirotasi pak, kira-kira kenapa ya, padahal faktor yg terbentuk sudah >2 alias ada 14 faktor pak tp tetap tidak bisa dirotasi..
    mohon dengan sangat kiranya bapak bisa memberi solusi nya..
    terimakasih sukses selalu pak :))

    ReplyDelete
  13. mas saya ada 12 item pertanyaan yang sy rencanakan di reduksi menjadi 4 faktor. yang mana 4 faktor tersebut menjadi divergen dari sebuah konstruk. Apakah bisa diatur saat running data dari 12 item mau kita susun menjadi 4? atau memang itu automatis dari spss nya yang akan mencari tahu brp faktor yang tepat dari item item yang kita masukkan sebagai data? mohon penjelasannya.

    ReplyDelete
  14. saya mau tanya, apakah saat nlia factor loading pada rotated component matrix ada tanda negative diabaikan atau tidak?

    ReplyDelete
  15. saya mau tanya. apabila saya menggunakan metode kuesioner dan variabel X1 sampai Xy masing2 terdiri dari 3 pertanyaan, dan rentang setiap jawaban antara 1-5. bagaimana cara mengolah datanya? apakah masih perlu menggunakan standarisasi z-score? mohon dijawab untuk keperluan skripsi. terima kasih.

    ReplyDelete
  16. Assalamu alaykum, pak sy mau nanya. gimana caranya kita menentukan jumlah faktor yang akan terbentuk. kan kalau kayak contoh yg bapak berikan itu dilepas saja, terserah nanti mau terbentuk berapa faktor.
    namun yang sy tanyakan disini, gimana caranya kita nentuin faktor yang akan terbentuk nantinya, misalnya kita mau faktor yang terbentuk itu 4 atau 5 terserah nanti indikator pembentuknya itu masuk di klp mana aja.
    mohon bantuannya pak, lagi perbaikan skripsi trus disuruh nentuin faktornya sm dosen ybs :|

    ReplyDelete
  17. asw pak maaf kalo analisis data yangdigunakan untuk membandingkan berbagai perlakuan namun variabel nya banyak apa bisa memakai analisis yang diatas? lalu bagaimana caranya?

    ReplyDelete
  18. Pak, saya mau nanya, nilai dari non redundant test bisa dilihat dari mana ya? Terima kasih

    ReplyDelete
  19. Pak, saya mau nanya, nilai dari non redundant test bisa dilihat dari mana ya? Terima kasih

    ReplyDelete
  20. Permisi admin, saya mahasiswa sedang dalam pengerjaan tugas akhir.. saya mengalami masalah di pca dimana nilai msa dari faktor2 yang saya ambil dilapangan pas2an di angka +- 0,500 (paling tinggi baru 0,502 itupun faktornya tinggal 4)..

    kira2 ada tips dan triks tidak untuk meningkatkan angka ini tidak min???? (hehe.. :D)


    terima kasih

    ReplyDelete
  21. assalamualaikum pak
    saya mau bertanya
    saya sedang mmbuat skripsi tentang pertimbangan mahasiswa dalam pembelian telepon pintar menggunakan analisis faktor. saya menggunakan varimax rotasi. apakah itu perlu dilakukan pak?
    dan hasil akhir dengan mencari orthogonal nya dengan 7 faktor kenapa tidak semuanya diatas 0,5 pak?
    apa itu wajar?
    yang nilai diatas 0,5 hanya 3.
    terimakasih pak

    ReplyDelete

 

Copyright @ 2013 Statistik Ceria

close